Philadelphia University

Lecture Notes for 650364

Probability \& Random Variables

Lecture 8: Mathematical Expectation
Department of Communication \& Electronics Engineering

Instructor Dr. Qadri Hamarsheh

Email: qhamarsheh@philadelphia.edu.jo
Website: http://www.philadelphia.edu.jo/academics/qhamarsheh

Mathematical Expectation

1)The Expected Value of a Random Variable

- Expectation is the name given to the process of averaging when a random variable is involved. The \mathbb{M} Iean value, the Statistical average, or the Expected Value of a random variable \mathbf{X} are different terms for the Expectation and denoted as $\mathbb{E}(\mathbf{X})$ or $\overline{\mathbf{X}}$
- Mathematical expectation can be thought of more or less as an average over the long run.
- The expectation of \mathbf{X} is very often called the mean of \mathbf{X} and is denoted by μ_{x}, or simply μ and it is often called a measure of central tendency.
\checkmark Definition 1. Expected Value.
- If X is a discrete random variable and $f(x)$ is the value of its probability mass function at x, the expected value of \mathbf{X} is

$$
E(X)=\sum_{x} x \cdot f(x)
$$

o if X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of \mathbf{X} is

$$
E(X)=\int_{-\infty}^{\infty} x \cdot f(x) d x
$$

The sum or the integral exists; otherwise, the mathematical expectation is undefined.
\checkmark Example 1: the probability function of \mathbf{X} is given in tabular form

x	0	1	2
$f(x)$	$\frac{6}{11}$	$\frac{9}{22}$	$\frac{1}{22}$

The mathematical expectation is

$$
E(X)=0 \cdot \frac{6}{11}+1 \cdot \frac{9}{22}+2 \cdot \frac{1}{22}=\frac{1}{2}
$$

\checkmark Example 2: (Discrete Random Variable)
Ninety people are randomly selected and the fractional dollar value of coins in their pockets is counted. If the count goes above a dollar, the dollar value is discarded and only the portion from 0C to 99C is accepted. It is found that $8,12,28,22,15$, and 5 people had $18 \mathbb{C}$, $45 \mathbb{C}, 64 \mathbb{C}^{\prime}, 72 \mathbb{C}, 77 \mathbb{C}$, and $95 \mathbb{C}$ in their pockets, respectively. Find the average of these values.

Solution:

$$
\begin{aligned}
E[X]=\bar{X}=\sum_{i=1}^{6} x_{i} P\left(x_{i}\right)= & 0.18\left(\frac{8}{90}\right)+0.45\left(\frac{12}{90}\right)+0.64\left(\frac{28}{90}\right) \\
& +0.72\left(\frac{22}{90}\right)+0.77\left(\frac{15}{90}\right)+0.95\left(\frac{5}{90}\right)=0.632 \$
\end{aligned}
$$

\checkmark Example 3: (Continuous Random Variable)
Find the mean value for the exponential random variable

$$
f_{X}(x)=\left\{\begin{array}{ll|}
\frac{1}{b} e^{-(x-a) / b} & x>a \\
0 & x<a \\
\hline
\end{array}\right.
$$

Solution:

$$
\begin{aligned}
E[X]=\bar{X} & =\int_{-\infty}^{+\infty} x f_{X}(x) d x=\int_{\mathrm{a}}^{\infty} x \frac{1}{b} e^{-(x-a) / b} d x \\
& =a+b
\end{aligned}
$$

2)Expected Value for a Function of a Random Variable

\checkmark There are many problems, in which we are interested not only in the expected value of a random variable \mathbf{X}, but also in the expected values of random variables related to X. Thus, we might be interested in the random variable Y, whose values are related to those of X by means of the equation $y=g(x)$; to simplify our notation, we denote this random variable by $g(X)$.
\checkmark Let X be a discrete random variable with probability function $f(x)$. Then $\mathbf{Y}=g(\mathbf{X})$ is also a discrete random variable:
\checkmark Theorem 1 .
O If \mathbf{X} is a discrete random variable and $f(x)$ is the value of its probability mass function at x, the expected value of a real function $g(\mathbb{X})$ is given by

$$
E[g(X)]=\sum_{x} g(x) \cdot f(x)
$$

o If X is a continuous random variable and $f(x)$ is the value of its probability density at x, the expected value of $g(\mathbb{X})$ is given by

$$
E[g(X)]=\int_{-\infty}^{\infty} g(x) \cdot f(x) d x
$$

\checkmark Example 4: If \mathbf{X} is the number of points rolled with a balanced die, find the expected value of $g(X)=2 X^{2}+1$.

Solution: Since each possible outcome has the probability 1/6, we get:

$$
\begin{aligned}
E[g(X)] & =\sum_{x=1}^{6}\left(2 x^{2}+1\right) \cdot \frac{1}{6} \\
& =\left(2 \cdot 1^{2}+1\right) \cdot \frac{1}{6}+\cdots+\left(2 \cdot 6^{2}+1\right) \cdot \frac{1}{6} \\
& =\frac{94}{3}
\end{aligned}
$$

\checkmark Example 5: If \mathbf{X} has the probability density

$$
f(x)= \begin{cases}e^{x} & \text { for } x>0 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the expected value of $g(X)=e^{3 X / 4}$. Solution:

$$
\begin{aligned}
E\left[e^{3 x / 4}\right] & =\int_{0}^{\infty} e^{3 x / 4} \cdot e^{-x} d x \\
& =\int_{0}^{\infty} e^{-x / 4} d x \\
& =4
\end{aligned}
$$

\checkmark mathematical expectations theorems which enable us to calculate expected values from other known or easily computed expectations
\checkmark Theorem 2. If a and b are constants, then

$$
E(a X+b)=a E(X)+b
$$

\checkmark Example 6: Making use of the fact that

$$
E\left(X^{2}\right)=\left(1^{2}+2^{2}+3^{2}+4^{2}+5^{2}+6^{2}\right) \cdot \frac{1}{6}=\frac{91}{6}
$$

For the random variable of example 4, rework that example.

$$
E\left(2 X^{2}+1\right)=2 E\left(X^{2}\right)+1=2 \cdot \frac{91}{6}+1=\frac{94}{3}
$$

\checkmark Example 7: If the probability density of \mathbf{X} is given by

$$
f(x)= \begin{cases}2(1-x) & \text { for } 0<x<1 \\ 0 & \text { elsewhere }\end{cases}
$$

(a) Show that

$$
E\left(X^{r}\right)=\frac{2}{(r+1)(r+2)}
$$

(b) And use this result to evaluate

$$
E\left[(2 X+1)^{2}\right]
$$

(a)

$$
\begin{aligned}
E\left(X^{r}\right) & =\int_{0}^{1} x^{r} \cdot 2(1-x) d x=2 \int_{0}^{1}\left(x^{r}-x^{r+1}\right) d x \\
& =2\left(\frac{1}{r+1}-\frac{1}{r+2}\right)=\frac{2}{(r+1)(r+2)}
\end{aligned}
$$

(b) Since $E\left[(2 X+1)^{2}\right]=4 E\left(X^{2}\right)+4 E(X)+1$ and substitution of $r=1$ and $r=2$ into the preceding formula yields $E(X)=\frac{2}{2 \cdot 3}=\frac{1}{3}$ and $E\left(X^{2}\right)=\frac{2}{3 \cdot 4}=\frac{1}{6}$, we get

$$
E\left[(2 X+1)^{2}\right]=4 \cdot \frac{1}{6}+4 \cdot \frac{1}{3}+1=3
$$

\checkmark Theorem 3: If X and Y are any random variables, then

$$
\mathbf{E}(\mathbf{X}+\mathbf{Y})=\mathbf{E}(\mathbf{X})+\mathbf{E}(\mathbf{Y})
$$

\checkmark Theorem 4: If X and Y are independent random variables, then

$$
\mathbf{E}(\mathbf{X Y})=\mathbf{E}(\mathbf{X}) \mathbf{E}(\mathbf{Y})
$$

\checkmark The concept of a mathematical expectation can be extended to situations involving more than one random variable. For instance, if Z is the random variable whose values are related to those of the two random variables X and Y by means of the equation $z=g(x, y)$, we can state the following theorem.
\checkmark Theorem 5:

- If X and Y are discrete random variables and $f(x, y)$ is the value of their joint probability distribution at (x, y), the expected value of $g(\mathbf{X}, \mathbf{Y})$ is

$$
E[g(X, Y)]=\sum_{x} \sum_{y} g(x, y) \cdot f(x, y)
$$

- If X and Y are continuous random variables and $f(x, y)$ is the value of their joint probability density at (x, y), the expected value of $g(X, Y)$ is

$$
E[g(X, Y)]=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} g(x, y) f(x, y) d x d y
$$

\circ Generalization of this theorem to functions of any finite number of random variables is straightforward.
\checkmark Example 8: Given the joint probability table, Find the expected value of $g(X, Y)=X+Y$.

- Solution

$$
\begin{aligned}
E(X+Y)= & \sum_{x=0}^{2} \sum_{y=0}^{2}(x+y) \cdot f(x, y) \\
= & (0+0) \cdot \frac{1}{6}+(0+1) \cdot \frac{2}{9}+(0+2) \cdot \frac{1}{36}+(1+0) \cdot \frac{1}{3} \\
& +(1+1) \cdot \frac{1}{6}+(2+0) \cdot \frac{1}{12} \\
= & \frac{10}{9}
\end{aligned}
$$

\checkmark Example 9: If the joint probability density of \mathbf{X} and \mathbf{Y} is given by

$$
f(x, y)= \begin{cases}\frac{2}{7}(x+2 y) & \text { for } 0<x<1,1<y<2 \\ 0 & \text { elsewhere }\end{cases}
$$

Find the expected value of $g(X, Y)=X / Y^{3}$.

- Solution

$$
\begin{aligned}
E\left(X / Y^{3}\right) & =\int_{1}^{2} \int_{0}^{1} \frac{2 x(x+2 y)}{7 y^{3}} d x d y \\
& =\frac{2}{7} \int_{1}^{2}\left(\frac{1}{3 y^{3}}+\frac{1}{y^{2}}\right) d y \\
& =\frac{15}{84}
\end{aligned}
$$

